


Dl-82-0963 

ANALYTICAL LUNAR EPHEMERIS 

I.     DEFINITION OF THE MAIN PROBLEM 

by 

Andr^ Deprlt 

Jacques Henrard 

and 

Arnold Rom 

Mathematical Note No. 647 

Mathematics Research Laboratory 

BOEING SCIENTIFIC RESEARCH LABORATORIES 

March 1970 







■ ■'   mmmm m—WIPTW?" mm 

-2- 

TliL"  formation of an Analytical Lunar Hpheraerls may be  rouglily 

divided  into  tliree stages.    At  first,   the three bodies  Sun,   Karth and 

Noon are taken as mass particles;   the barycenter of the pair  Earth- 

Moon  is supposed to move round  the Sun In a given Keplerlan orbit; all 

displacements of  this orbit and of  the Moon's orbit caused by  any 

other source  than the Sun and  the Karth as mass particles  are  Ignored. 

This   Initial  stage is called the Main Problem,  and Its solution 

constitutes   the Solar Part of an Analytical Lunar Ephemerls.     In the 

second phase,   secondary perturbations are Investigated.     The algebraic 

construction may proceed,  at  least  In principle,  without any knowledge 

of  Initial conditions beyond a crude estimate of  the relative magnitude 

among some of  the constants  Involved.     The third stage would  then be 

devoted  to mounting analytically  the partial derivatives with  respect 

to the astronomical constants  to be determined from observations, in 

evaluating  the constants numerically and in substituting these numbers 

in the analytical expressions so as  to obtain a Numerical Lunar 

Ephemerls. 

Of  the methods which have been proposed to solve analytically the Main 

Problem,  Delaunay's Thöorie du Mouvement de la Lune must take  the first 

place.     His  algorithms may not bo  the best adapted to automated algebraic 

calculation   (Barton 1966),  but he has actually carried his  construction 

to a high degree and with a detail greater than any other.     Delaunay's 

formulae offer numerous opportunities for testing subroutines and assess- 

ing what new analytical solutions of  the Main Problem may achieve. 

"''''"''''''''—'■'••'1''''"r"' ":  MM 
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Durlng the last  four years, we have been considering implementing 

by computer the suggestion of Dr. Brouwer  (1961).     The algorithm of 

Von Zelpel which h* proposed may appear troublesome,  chiefly from its 

inability to produce  the eliminating canonical  transformations and 

their Inverses  in an explicit  form.    Mersman   (1969)  has significantly 

developed the capabilities of Von Zelpel's method.     Yet Mersman's 

ulgoritluns  for unmixing  the variables are not.  recursive, which makes  it 

difficult to involve  them  in gereral codes whore  the order of a  theory 

enters as dummy argument.     Some time ago   (Deprit   1969),   It has been 

shown how the  difficulties  raised by Von Zelpel's method might be 

avoided by  the use of Lie   transforms.    At  the same   time, our computer 

techniques   (l)anby et  al.   1965,  Rom 1970)  have  undergone a complete 

overhauling to accomniüdate divisors made of products of  linear 

combinations of mean motions. 

It  is  Intended  to  combine  these  two  techniques—the canonical 

perturbation theory based on Lie transforms  and  the processing of 

Lcheloned Series—so as   to  completely solve   the Main Problem of an 

Analytical  Lunar Emphemeris, 
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1.     THE PKRTURBATIÜN  FUNCTION 

Let    ^    (r>rep,    j^. ,ji2)    designate the position of the Earth 

(wap.   of  the Moon,  of the Sun);   to these position vectors are 

associated the impulsions 

AL  - mA3l. i*i' (i-0,1,2) (1) 

in which    m.    (reap,    m-.m«)    indicates tha mass of the Earth 

(r^.s'p.   of  the Moon, of the Sun).    The mutual distances being the 

functions 

0,1 UQ-^W*    
ro,2" II-üO-M.    

ri,2" ll-v^H.   (2) 

this problem of three bodies is described by the Hamiltonian 

0<i<2 mi   1       (i,j) rij 
(3) 

Positions Cün»^ »Aio) in t^e  inertial frame are transferred to 

positions  Ojo»&I »Äo) ^n a chain of barycentric coordinate systems 

according to the formulas 

% " Ail " -V 

^2 " ^2 " (1"al)'Ü0 ~ "l-V 

&Q " a2fy. +  (1-a2)t(1'al)-Ü0 + al%1 

(A) 

wherein 

ml 
^l " m„+m, ' 

"O 1 

The inverse mapping 

2  mf,+m1+m„ 
(5) 

 mam^mm ■'•   'r^A- T.-.:. ■:.-.-;; I.-'-.::: :.--'   -yr-. -:."••'-■ —-:T;;..r^Lx;r "r rr'..TY^-T--'ll-- 
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Aii -^o + d"0!^! ' °2&2' (6) 

Ai2 - 2So +  (1-a2^2 

extends through  the Implicit definitions 

^ - a^l-oj)^ +^* -  (1-c^^. (7) 

Ü2 = o^0+^ 

into a homogeneous linear canonical transformation.    The vector   £. 

is the geocentric position of the Moon,  the vector   ju,    the position 

of the Sun with respect to the barycenter of the couple  (Earth-Moon) 

and the vector    x^,     the inertial position of  the barycenter of the 

system  (Earth, Moon,  Sun).    Under this homogeneous canonical extension 

the Hamiltonian decomposes into the sum 

mnmi (nu+m, )m0 

^ - Cn + -9I~^i  +      L, L ■  ^o + V* (8) 0      mQ+m.    1      m.+m.+m«      2 v  ' 

whose terms are 

co= ^vvvi'V'2, (9i) 

2 
1       m -hn k  (mn+m  ) 

*! ■ h\ ^f m* --^ • <V 
2 

1       mf.-hn1+m- 9      k  (m -hn.+m-) 

^2 "ill   (m^^^H r2  ' (93) 

CP* = k2m  [m   (-^---i-) + m   (i - -^-)]. (9.) 
2    0 r2      r0>2 1 r2       r0jl A 

Mtitai 
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The distance functions entering the Hamiltonlan are now 

ri" ro,i " 11*1 H' 

r2 " 11*2 II • 

provided the elongation function    B    is defined by the relation 

rlr2S ' ^1 * ^2* (11) 

Following Poincare   (1909,  p, 5), we define the impulsions per 

unit of mass 

m0+m 
Ä1  - -^-^Ä?. (12i) 

m-.+m. +m9 

X0 -   /    ~ r    X*. (129) ~2      (m0+m1)m2 ~2 v    2' 

By neglecting the contribution made by  the terms of   P*    that 

depend on the Sun's position   ^c,»    we account for the motion of the 

Sun through the Hamiltonian 

2 
. 0      k  (mn-fin..+m-) 

*2-j\\&2\\2 T^-1- • W 

In other words, we assume that the Sun moves on a fixed ellipse having 

a focus at the barycenter of  the couple  (Earth, Moon);  let    a^    and    e2 

designate respectively the semi-major axis and the eccentricity of the 

solar orbit.    The Sun's mean motion satisfies Kepler's third law,  i.e. 

2 3        2 
n2a2 " k  ('"o41"!^^* ^^ 

MBMi—i—Mmja - ffliaKaBfcjtMgLajBMaBantjfciMe^ is*mm*MmmmmitiUBmtaamatuail—mm 
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From now on the orbital plane of the Sun is taken as the refsrsnc« 

plane    (x,y).    If    g_    is the argument of perigee of the Sun reckoned 

from the x-axls and    f»    its true anomaly,  then the coordinates of 

the Sun's position   £»    are 

x2 - r2co8(f2 + g2), (ISj) 

y2 - r2sin(f2 + g2), (152) 

z2 - 0. (153) 

Under this approximation,  the motion of the Moon is described by 

the Hamiltonian 

Jt sJ^.X^Ct)) -Ä1(&1,jt1) + iP0L1.Ä2<t)) <l6i) 

with 2 

i o      k  (nu+m.) 
^1-2  II^H     -        r°    1    » (162) 

3>= -^—iy* - kVj— (~ i-) + T-i- (-^ —)]. (16.) 
m0ml 2 öl    r2      r0,2        ^l    r2      rl,2 3 

But,  in application of the binomial law under the assumption that 

r1 <  r2. 

T^'T^ (-1)n(r)npn(8)' r0,2      r2 n^O J-      r2      n 

ii ri  n 

-L.m± s (-0l)
n(-l) P (s) 

r1.2      r2 n>0 l      r2      n 

where,  for any    n >_ 0, P      is Legendre's polynomial of degree    n. 

Consequently 

,2 
K m« , 1    r. n 

T= --—^   V [(l-o,)11"1 -   (-o.)""1]^) Pn(s). (17) r2    ^ 1 1 r2      n 

■ mi' 
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2.     BASIC I'llASi: COORDINATliS 

Wi« »ubBtltute Dcluunay's phase variables    (£, tgi »h. ,1. .G. ,H ) 

to the Cartesian coordinates   ^ ■  (x-.y-.z.)    and conjugate momenta 

£.  -   (Xj.V-.Z.).    Then we modify them Into  the set 

vi" 'i + gi + hr     Ai' Lr 

pi' '8i ' hr pi " Li " cr <18) 

gl - -hj, ^i " Gi " Hi- 

The phase space of the Main Problem In Lunar Theory will be here 

coordlnatlzed by this set of modified Delaunay's elements. 

In relation with Delaunay's action A., we define the semi-major 

axis a. and the mean motion n. such that 

A^ - k2(m0 + m1)a1, (191) 

nj^a, - k (m0 + m^. (192) 

Then we Introduce the parameter of lunar parallax 

a. 
1 

a2 

the modified parameter of lunar parallax 

(20) 

^ - (1-2^) i; (21) 

also we designate by 

m ■ n2/n. (22) 

the ratio of the mean motions of Sun and Moon. 

— ---> • • t- ■•-- 
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In relation with the norm of the angular momentum   G.,    we found 

convenient  to use, beside the eccentricity    e.,    a function 

E.   : Z.(l  ,? )  > 0    such that 

1  "11 

From the obvious relation 

2P, - L^J. (23) 

«i -E? - i 4» (2A) 

there results that 

Y E* - 1 - (l-e2)1/2. (25) 

In terms of what Is sometimes called the anomaly of the eccentricity, 

namely the angle 4. such that 

0 <^j< TT/2,   e1 - sin 4^, 

it turns out that 

Ej^ - 2 sin(4,1/2). 

In relation with the component    H-     of the angular momentum 

normal to  the ecliptic, we found convenient to use, beside the 

inclination    I..,    a function    J..   = J-(L.,(}..)  > 0    such that 

2Q1 = L^2. (26) 

It is easily seen that 

_,.   2vl/4 .  1 T   »/,   1 r2a/2 ,  1 T 
J1  - 2(1 - e^)      sin 2    1 "     ^ 2    1^  S 2    1* 
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Al80, we shall often substitute to the angles g-  and h1 the 

linear combinations 

Fl-*l + 8l' (27^ 

)1-A1-X2 -S + Si + h^^ -g2 (272) 

that have been introduced by Delaunay under the names of mean elonga- 

tion of the Moon to its node and of mean elongation of the Moon to the 

Sun, respectively. 

The development of the Analytical Lunar Ephemeris involves a 

number of basic differentiations. Reviewing them here will justify 

partly why we departed from Delaunay's traditional functions e.  and 

I1  in favor of the quantities E. and J.. 

From the elementary derivatives 

_J_ _ä_ 
31^ 1  n^ *   31^  1 2 ' 

we immediately deduce that 

3     k   S+V 
3Ll'"    al   "" 

-2^, 

3    _L = _3 
9L1 nl 

- 2 
k  (niQ+n^) -1 

(28^ 

(282) 

and,   for any    j   >  0, 

k W   a    j     9,     j 
—r—w:ai   2iniaV (283) 

k ^ij   9    j     „     J (284) 

-•■ 



mmmmmmmmmmmmmmmmmf*»      umm.n   w^^mm^^^^mmmm^^^^^mm^^gi 

-11- 

simllarly, from the elementary derivatives 

3L1 1  ~ 2 4 *   &i    1    2 i^! ' 

we calculate that, for any j ^ 0, 

2 
k (niQ+m.) g       j^ 

-^ 1)17 Ei " " I JniEr (29l) 

2 
k (m.+m ) 

Also, from 

9 E = ,1      ^ j. 
3P1 1  L1K1   '   9Q1  1  L1J1 ' 

we conclude that, for any j ^_ 0, 

2 
k  (mn+m  ) 

—V1-^^" Vi ' ^v 

JiuVV   a    Tj     ,    Tj-2 
 i7— ^ Jl = JnlJl     ' (302) 

We conclude this sequence of elementary differentiations by a set of 

simple formulas for the partial derivatives with respect to the actions 

A., Pj, Q..  of the two types of monomials that we shall meet time and 

again in the development of an Analytical Lunar Ephemeris. 
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3.     DKVKLOPMENT OF THE PERTURBATION 

Let     f,    denote the true anomaly of the Moon;  then its position 

vector   ^Si    ^as for components 

x,   - r1[cos(f1+g. )cos h    - sin(f1+g1)sln h1 cos  I.], (32^ 

yl = i"1[cos(f1+g1)sln h1 + sin(f1+g1)cos h1 cos  1^, (322) 

z1 = r1sin(f1+g1)sin 1^^, (323) 

and  the elongation function    s    defined in   (11)   turns out  to be 

the function 

s = cosfCfj-^)  -   (f2-^2) + D^cos2 I l1 

+ cos[(f1-P1)  +  (f2-/2) +  2F1  - Dj^Jsin2 ^ 1^ 

(33) 

The systematic development of    s    may proceed as  follows. 

(i)     One obtains  the d'Membert series 

s(f-,)  = 1 +    V   /  V    e      e^UJcos j,, (34.) 
j>lU>0    J'k      j 1 

sin(f-£)  = V   f   X    s4  .e^Vsin je. (34  ) 2       2    s      e      e^sin ji. (34  : 
j>lVk>0    J'k     / 2 

Several algorithms have already been proposed to generate such series 

by computer  (Deprit and Rom 1967,   Broucke  1969);  we propose  to come 

back to  this elementary but  important problem in  the next  installment. 

^Mk 
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(li) In the series (34) applied to the Moon, i.e. for f - f1, 

£ ■ £., and e ■ e., we make the substitutions 

2n  /s.2 _ i p4vn 
el   (E1  4 El) » 

2n+l ,v2      1 „4,. n 
el   " (E1 " 4 El)el 

where e. is the expansion of 

,1 2 1/2 
el  El(1  4 El) 

in powers of E1. These substitutions produce a d'Alembert series of 

the type 

cos (f -£   ) - 1 +   I  ( I    c      E?k\Ejcos j£   , 

s (s ^ kE?kVisin ^r sinCf^^) 

(iii)    Then, by straightforward multiplication, we calculate the 

products 

M    = cos(f1-£1)cos(f2-£2), 

M2 = cos(f1-Ä,1)sin(f2-£2), 

M» = sin(f1-«,1)cos(f2-£2). 

M4 = sin(f1-£1)sin(f2-£2), 

which come out as d'Alembert series in the pairs  (£,£.) and  (e2,£2)( 

**•■ ■»—*■■ i ITMII n i MI    *.:■ 
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(Iv)    As  the last  Intermediate step, we produce 

cosUf^) -   (f2-ü2) + D1] -  (M1+M4)cos  Dj^ +  (M2-M3)8in D1, 

cosKf^^) +  (f2-£2) + 2F1 - D^ -   (M1-M4)cos(2F1-D1)  -  (M2+M3)sin(2F1-D1) 

The  first trigonometric  function will come out of the straightforward 

multiplication as a series 

1 111   c^   2EA  2cos(j   £    + j   i    ± D ) 
iil0    ^l0    Ji    J2    ^    2 

with the d'Alembert characteristics 

j1 =   i1     (mod.   2), |j1|   1 i1, 

j2 :   i2     (mod.   2), |j2|   <. i2; 

similarly the second product will be a series 

1 1       1     1     z±     /E    e/cos(j   £    + j   £    + 2F    + D  ) 
^l0    ^2-°    h    j2 l    2 i  i ^  ^ i        i 

with the same d'Alembert  characteristics. 

According to   (34),   the  elongation function    s     can now be assembled 

as  a series in    E  ,  e_;    by means of the development 

4    2    l sin Jh'l^-j^-^l^ji*!- (35) 

it can be reworked as  the series 

aa* 
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*-     1       1        1        11 1       c1
l,

1
2,

1
3Eile22jl3cos(JlÄl+j28-2+2j3FliDl) 

i^o i2lo ij-o.i  j1  j2   j3-o,i  h>h<h 1  ^   1        i i  ^    J i   ^ 

(36) 

with the d'Alerabert characteristics 

IjjJ 1 iv        J! s  i1    (mod. 2), 

|j2l  1 i2.        j2  -  i2    (mod.  2), 

IJ3I lly 

At  this point we depart from the suggestions made by Delaunay 

(1860,  p.   17 to 20):    a systematic procedure is in order if the development 

of the perturbation is to be carried by computer. 

From Kepler's  third law applied to Sun and Moon, we have that 

k2m2al      ^W    2 ,„,  — .  „i a                                             (37) 
3 a, 2 

a2 1 

Delaunay (1860, p. 20) decides at this point to take o- » 1. Actually 

since the algebraic manipulations are carried by computer, there is no need 

for erasing the symbol 0,; its presence in the calculations is very useful 

for preliminary checks and for tracking the origin of the terms appearing 

in an operation. We also put 

r, = a.p 1M1. 

r2 = a2p2' 

(l-a/-1-^)""1 

*n =   (l-2a1)
n-2 

for n > 2. 

(38^ 

(382) 

(383) 

— —a aa a, ^^71^l'^; ■;, ;■■;„-::;- au aaaaai Jut ma ■'■■■■■ a«——MMM taaflaBMM»MMM—MMB" 
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With these conventions,  the perturbation function   3*   given by (17) 

can be slightly reworked to appear in the form 

k oy^)     2 
9 a2m 

*   2     P1 

^ *jai    i+rpj(s)- (39) 

In this manner, 9   is more akin to de Pontecoulant's perturbation 

than to Delaunay's series: the parallactic parameter a1 does not 

enter explicitly the part of 9   corresponding to j = 2  (Brown 1896, 

pp. 7 and 82). 

Let us examine the mass functions ^.;  to this effect, we introduce 

the correction factor 

0^,(1-0,)   ni0m 

^  (l-2o1)
2  (mQ-m^2 

(40) 

By putting also 

Kl =  (l+4c1) 
1/2 

(41) 

and inverting the definition  (40), we recognize  easily that 

1-ß 
al=2iü 

1+ß] 
^l = 237 

l-2o 
1      3, 

which implies  that,   for    j   ••  2, 

^-h     1     (^)[i+(-i)k]r^. 
J       2'   i 0<k<J-2    K+i i 

(42) 

Since they constitute polynomials in the even powers of ß. ,  the 

mass functions 

The first eight ones are as follows: 

>,     are polynomials in the correction factor c.. 

MMäi mm 



-18- 

t2 - 1, 

*3 - 1, 

% - 1 + ci' 

t>5 - 1 + 2clt 

t>6* I + 3c1 + cj, 

*    = 1 + Acj^ + 3cJ, 

(I)    = 1 + Sc^ + 6cJ + cj, 

2 3 
(J)    - 1 + 6c.  + lOCj^ + 4c1. 

The tradition in Analytical Lunar Theories has been to drop from P 

the terms having CJ as a factor (Brown 1896, p. 8). For the time 

being we shall refrain from doing so. 

Let us now establish a recursive procedure to expand the terms 

CPj  = --j—PjCs).       (j L0) (43) 
p2 

From a library of elliptic expansions in the problem of two bodies, 

we produce the three d'Alembert series 

1 + iff* - i E*) + ^ H   cj ikEf\EJco8 n,. C442) 

ivi2 1,  12 1 /E/e2
i<:oB(J1ll1 + J2t2), (443) 

»l" 

r-   i    *    2   1   c^V 

hence,  by straightforward multiplication of   (36),   (442)  and (44-) 

the d'Alembert series 

HMi iiMWHWMii'aa_-~■ ■liiiil^iMWnillinrrtfWMUfciifwiBasirtmafcwayryn.Y.w'-Av   ■jiaaaigaaaflMaHI—l——M^teBMB—PM« 
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1 p2    U      1^0 1^0 13-0,1    J1    J2    j3    Jl»'2,:,3 *    £    1 

co8(J1il1 + J2*2 + 2J3FJ + Dj). 

Remembering the recursive relation 

(j+l)Pj+1(8)  -  (ZJ+DsP^s) - JPj^, (J >_ 1) 

between Legendre's polynomials, we  infer the recurrence 

(j+l)3>      (s) - -± [(2j+l)s5>   - J -i !P     ]. (J >. 1) 

It is now a matter of straightforward multiplications and linear 

combinations of Poisson series to obtain the functions    3>     in the n 

form 

^ S    ,214     v     v     v     v c
n'12'i3'1A 

i2lo   i^O   i^o   1   ^ j1   j2   j3   j4 

cos(J1D1 + J2Jl1 + J3i2 + j^) 

with the d'Alembert characteristics 

^ - n (mod. 2), Ui I 1 n» 

j2 =  i2 (mod. 2), IJ2I - i2, 

j3 :  i3 (mod. 2), |j3| <_ i3, 

j4 =  i4 (mod. 2), IJ4I 1 ^ 1 n. 

Substitution of these terms  into  (39)  delivers the perturbation 
2 

k  (m0+m  ) 
T -  ?(ai,E1,J1,e2;  ,m,a2,c1:D1,F1,J.1,e2) 

(A4A) 
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iiH a Horli'H in llio powiTH of til« mojlfiiid parallax parameter    <%.,    the 

Moon's eccentricity parameter    K.,    ItH inclination parameter   J.    and 

ilic Sun'ti eccentricity    e2.    The coefficients In this Merles are finite 

trigonometric sums  in the arguments    D.,F.,t.    and    ij»     t'ie P^lrs 

('.il'i)!   O-.fj).  (e2,.2),   (JpF.)    present the d'Alembert characteristics 

listed  for any    J* .    The coefficients of the trigonometric sums are 

polynomials in the mass correction    c.,    each of them to be multiplied 

by the common factor 
2 

k  (mjj+mj)    2 
 mo«. 

a1 2 
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4.     COMPARISON WITH DKLAUNAY 

The development of the perturbation has been performed automatically 

on an IUM 360.    The output Is a deck of punched cards in hexadecimal code 

formated to serve as Input  in the further construction of the Analytical 

liphemeris. 

The main program and its subroutines have been tested by reconstruct- 

ing Jelaunay's expansion. Thus, as It is done in the Tlu'ovie du Mouvenent 

du  la IAOIC,  we eliminated the mass  ratios by assuming that 

o2 - 1,        Oj - 0, c1 - 0; 

also we used  the  eccentricity    c.    of the Moon Instead of the function    E., 

and the variable 

I 
1 " "*" 2  '1 ■,,  ■ sin — 1 

instead of the function    J.. 

Comparison  term by term between Delaunay's text and the computer 

listings has been made by Mrs.  Deprit-Bartholome. 

In the expansion we had retained all  terms whose characteristic 

is such that 

*    el Yl e2 

2jl + J2 + J3 + JA - 10- 

Delaunay has explained why he did not collect all of these terms.     It 

may be of interest  to learn by how much Delaunay's considerations on the 
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tl   . ..   1 .   _M onliT      of    o.j    havu simplified his perturbation  function.    We enter 

2 
In  Table  I   the   103 missing  terms having    a      as  a  factor  (tliey all have 

characteristics sucli  that     J2 + J-, + J,   = 6)    and  in Table II  the  19 

3 
missing terms having     <       as a factor  (their characteristics are such 

that    Jo + -1A 
= ^    ant'    J i ■ 0^*    1',e  trigonometric arguments are  listed 

in  the manner Delaunay ordered them,  except  for  the last 29 entries  in 

Table  1 and  the  last  8 ones in Table  II which are not to be  found  in 

Del uinay's perturbation.     Some of the  terms  appear in Tables  I  and  II 

with significantly  large   coefficients;  one may wonder if Delaunay was 

justified in omitting them. 

All other  terms  that are common  to Delaunay's  perturbation and ours 

agree in their coefficients. 

Now Delaunay's expansion has been recovered by Barton   (1967), 

Broucke (1969)  and Jefferys  (1970); each of  these authors report agreement 

with their codes.     Therefore we can presume that our programs are opera- 

tional and our development   is correct. 

... .,.._,.., „,...,,.....,. 
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Table 1. TeniiB Jn U            ( JJTliU ed by Delaunay • 

CliaracterlstlcH Argument« Numerators Henomlnators 

( el Yl e2 h y2 Dl Fl 

2 0 0 6 0 0 0 0 35 64 2 0 0 6 0 2 0 -35 384 
2 0 2 4 0 2 0 -39 32 
2 2 0 4 0 2 0 -195 128 
2 2 0 4 2 0 0 -15 64 

;    1 0 1     5 0 0 -26 J 2 56 
2         1 2 ^ ^ 0 0 81 16 

3  ;   o 3 0 0 27      ' 2 56 2 i ;   o 5 .J o 0 -261    ; 2 56          | 
2   i     1         2 3 

<i 

0 0 81      1 16 
2         j         0 3 

* 
0 0 27      1 256 

2         0         0 6 o 0 0 14] 128          ! 
2         2         0 4 ... | 2 

i 
0 39      ' 64          1 

2   1     1    1    0 ^ 1 
1 

2   i 0 1467 512           ! 

I   i     1    1    l 3 I -1        ' 2 0 369 32 
() 3 

I "*        1 
2 0 7011       ' 512          1 

2         5        0 1 1  1 ) 2 0 2247 512 

; !   1 '  0 5 1 j 2 0 -5    ; 512          ! 

2         112 3 j 1 
2 0 -3      ' 32          ! 

2         3   |    0 3 1 
2 0 -57      ! 512          1 

2               1       ;        0 5 -1 -1 2    ' 0 -4401 512          i 
2         12, 3 

t 
-1 2 0 -1107      ' 32 

2,3         0    , 3 1 
-1 2 0 -4797 512          I 

1              0   ! 
ri 

1 i 2 0 15 512          ! 
1   \     l    \    2    , 3 j 

1 2   , 0 9 32          1 
2         3         0 3 

.    i 2    ' 0 39   ; 512          ! 
2,0         0    i 6 0 -7      ' 

t 
2    ' 0 601 64          ! 

2,01 0        I 
1 4 

0 1 -2 ; 2 0 115      ! 4 
2    |     2    !     0    1 4 0 _2 

j 
2 0 575      ' 16 

2    ,     0    ,    2    j 4 o   i 0    t 
0   ! T 45      1 16          l 

2   i    ^   i   o   , 3 
3 1 1    ' 0   \ 0 -27 256          1 

2 M i  0 I 3 3 -i  ; 0    \ 0 -27      ' 256          ' 

; i ; i () i 4 2 
i 2 0 0 -7      1 32          1 2  i   2  1  o  ; 4 2 
i 

_2    I 0 0 -7       ; 32           ' 
2    11,0! 5 i   ! 3    , 0 0 -39 3 512 
2    i     !    i    2    1 3 i 

I 

3    i o   1 0 159       ! 16 
2    ,     3 o   i 3 i 3 0    | 0 53   ; 256          1 
2 ;  i ; o 5 i   \ -3 ! 0 0 -393 512 
2         112 3 i 

■3 i 
0     ; 0 159 16 

r
3    '    () 3 i -3 0 0 53 2 56 

I    1    "    1    Ü 6 0 4    ' 
1 

0 0 129 130 2    1     3    ,    n    i 3 3  I -i ! 2 0 -3075       ! 512           ! 
2    1 

3    , 0    | 3 3 
I 
-i i 0 25       1 512           ' 

I  2 
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Tablc  I   (continued) 

Characteristics Arguments Numerators Denominators 

u el Yl e2 M h Dl Fl 

2 | 0 3 ■" ^ " i 2 0 861 512 
2 ! 0 3 -3 2 0 -7 512 
2 ! 0 4 -2 2 0 -115 8 
2 0 5 -3 2 0 -32525 1024 
2 2 3 -3 2 0 -845 32    1 
2 0 3 ~3 2 0 -16055 512 
2 0 5 ~1 2 0 11 1024 
2 2 3 -1 '  2 0 -1 32 
2 0 3 -1 2 0 -19 512 
2 0 5 -1 -3 2 0 97575 1024 
2 2 3 -1 -3 2 0 2535 32 
2 0 3 -1 -3 2 0 10985 512   | 
2 0 5 -1 3 2 0 -33 1024   ! 
2 2 3 -1 3 2 0 3 32 
2 0 3 -1 3 2 0 13 512 
2 0 0 6 0 -4 2 0 -41481 640 
2 0 2 4 0 -4 2 0 -1599 32 
2 2 0 4 0 -4 2 0 -7995 128 
2 o 0 6 o 4 2 0 7 320 
2 0 2 4 0 4 2 0 -1 16 

2 2 0 4 0 4 2 0 -5 64 
2 2 3 1 0 2 81 32 
2 2 3 -1 0 2 1      81 32 
2 2 3 -1 1 0 2 -243 32 
2 2 3 -1 -1 0 2 -243 32 
2 2 4 2 0 2 21 8 
2 2 4 -2 0 2 21 8 
2 2 3 -1 2 -2 i      369 32 
2 2 3 1 2 -2 -3 32 
2 2 3 -1 -1 2 -2 369 32 
2 2 3 -1 1 2 -2 -3 32 
2 2 3 -1 3 0 2 159 32   j 
2 2 3 -1 -3 0 2 -477 32 
2 2 3 3 2 -2 -1 32 
2 2 3 -1 -3 2 -2 -845 32 
2 0 3 3 0 0 -53 256 
2 0 3 3 2 0 25 1536 

2 0 3 -3 -3 2 0 -5915 1536 

2 0 3 -3 0 0 -53 256 
2 0 3 -3 3 2 0 -7 1536 

2 0 3 -3 2 0 21125 1536   1 
2 2 3 -1 3 0 2 -477 32 
2 2 3 -3 0 2 159 32 
2 2 3 -1 3 2 -2 -1 32 
2 2 3 -3 2 -2 [     -845 32 

(*) 

(*)     From here on  the arguments do not enter Delaunay's perturbation. 

»a...,:..^..       ■- ,..„,.■.,.>„-.,>-, T- r—gaiaaaaagB 
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Table I   (continued) 

Characte rlstlcs Arguments Numerators Denominators 

a el h e2 h 0 
^2 Dl Fl 

2 0 2 4 0 4 0 2 231 32 
2 0 2 4 0 -4 0 2 231 32 
2 1  2 0 A 2 4 0 0 -77 128 
2 2 0 4 2 4 2 0 1 32 
2 2 0 4 2 -4 0 0 -77 128 
2 2 0 4 2 -4 2 0 1599 64 
2 0 5 5 0 0 -1733 512 
2 0 5 5 2 0 243 5120 
2 0 5 -1 -5 2 0 -685041 5120 
2 0 5 -5 0 0 -1773 512 
2 0 5 -I 5 2 U -729 5120 
2 0 5 -5 2 U 228347 5120 
2 0 0 6 0 6 0 Ü 3167 640 
2 o o 6 0 6 2 0 1 15 
2 0 0 6 0 -6 2 o 73369 960 
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3 oml ttcd by Delautiay. 

TFT 

3 
3 
j 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

0 
0 

1 
1 
0 
1 
1 
1 
] 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 

stl 

u2 

Arguments Numerators Donüminators 

1 '1 
Ki Dl 

Fl 

0 4 0 0 1 0 717 512 
0 4 I) 0 3 0 2115 512    1 
0 3 1 -1 1 0 -33 64 
0 3 1 1 1 {) -15 32 
o 4 0 _2 1 0 117 128 
0 3 1 -1 3 0 -1A5 8    | 
0 3 1 1 3 0 95 64 
0 3 -1 -1 3 0 495 8 
0 3 -1 1 3 0 -225 64 
0 4 0 -2 3 o 15325 384    1 
0 4 0 2 3 o 5 384 
f) 3 3 I 1 u -23 64 
0 3 -1 -3 3 o -7335 64    | 
0 3 1 -3 3 0 2445 64    1 
0 3 1 -3 1 0 -77 32    1 
0 4 0 4 1 Ü 1029 1024 
0 4 0 4 3 0 5 3072    1 
0 4 o -4 3 0 177065 3072 
0 4 a -4 1 

.... 

0 8865 1024 

(*) 

(*)     From  here on  the arguments  do  not enter  Delaunay  s  perturbation 

'■' jmiaumn   ■— ■• • i T"—• . ' MBM—Mua maaCä ■ ■■-■•> «-m»,i> 




